Среди 50 лампочек 4 нестандартные найти вероятность

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Для события В условия прежние, , а для С ситуация изменилась. Произошло В, следовательно в урне осталось 14 шаров, среди которых 4 белых .

Итак, .

Задача 2.12. Среди 50 электрических лампочек 3 нестандартные. Найти вероятность того, что две взятые одновременно лампочки нестандартные.

Решение. Рассмотрим события: А – первая лампочка нестандартная, В – вторая лампочка нестандартная, С – обе лампочки нестандартные. Ясно, что С = АВ. Событию А благоприятствуют 3 случая из 50 возможных, т. е. Р(А) = 3/50. Если событие А уже наступило, то событию В благоприятствуют два случая из 49 возможных, т. е. Р(В/А) = 2/49. Следовательно,

.

Задача 2.13. Два спортсмена независимо друг от друга стреляют по одной мишени. Вероятность попадания в мишень первого спортсмена равна 0,7, а второго – 0,8. Какова вероятность того, что мишень будет поражена?

Решение. Мишень будет поражена, если в нее попадет либо первый стрелок, либо второй, либо оба вместе, т. е. произойдет событие А+В, где событие А заключается в попадании в мишень первым спортсменом, а событие В – вторым. Тогда

Задача 2.14. В читальном зале имеется шесть учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что два учебника окажутся в переплете[2] .

Решение. Введем обозначения событий: A – первый взятый учебник имеет переплет, В – второй учебник имеет переплет. Вероятность того, что первый учебник имеет переплет,

Вероятность того, что второй учебник имеет переплет, при условии, что первый взятый учебник был в переплете, т. е. условная вероятность события В, такова: P(B/А) = 2/5.

Искомая вероятность того, что оба учебника имеют переплет, по теореме умножения вероятностей событий равна

Задача 2.15. В цехе работают 7 мужчин и 3 женщины. По табельным номерам наудачу отобраны три человека. Найти вероятность того, что все отобранные лица окажутся мужчинами.

Решение. Введем обозначения событий: A – первым отобран мужчина, В – вторым отобран мужчина, С – третьим отобран мужчина. Вероятность того, что первым будет отобран мужчина, P(A) = 7/10.

Вероятность того, что вторым отобран мужчина, при условии, что первым уже был отобран мужчина, т. е. условная вероятность события В следующая: P(B) = 6/9 = 2/3.

Вероятность того, что третьим будет отобран мужчина, при условии, что уже отобраны двое мужчин, т. е. условная вероятность события С такова: P(C/АВ) = 5/8.

Искомая вероятность того, что все три отобранных лица окажутся мужчинами, P(ABC) = P(A) P(B/А) P(C/АВ) = 7/10 · 2/3 · 5/8 = 7/24.

2.6. Формула полной вероятности и формула Байеса

Пусть B1, B2,…, Bn – попарно несовместные события (гипотезы) и А – событие, которое может произойти только совместно с одним из них.

В этих условиях справедливы формулы:

(2.5)

(2.6)

Формула (2.5) называется формулой полной вероятности. По ней вычисляется вероятность события А (полная вероятность).

Формула (2.6) называется формулой Байеса. Она позволяет произвести пересчет вероятностей гипотез, если событие А произошло.

При составлении примеров удобно считать, что гипотезы образуют полную группу.

Задача 2.16. В корзине яблоки с четырех деревьев одного сорта. С первого – 15% всех яблок, со второго – 35%, с третьего – 20%, с четвертого – 30%. Созревшие яблоки составляют соответственно 99%, 97%, 98%, 95%.

а) Какова вероятность того, что наугад взятое яблоко окажется спелым (событие А).

б) При условии, что наугад взятое яблоко оказалось спелым, вычислить вероятность того, что оно с первого дерева.

Решение. а) Имеем 4 гипотезы:

B1 – наугад взятое яблоко снято с 1-го дерева;

B2 – наугад взятое яблоко снято с 2-го дерева;

B3 – наугад взятое яблоко снято с 3-го дерева;

B4 – наугад взятое яблоко снято с 4-го дерева.

Условные вероятности события А:

Вероятность того, что наудачу взятое яблоко окажется спелым, находится по формуле полной вероятности:

б) Формула Байеса для нашего случая имеет вид:

.

Задача 2.17. В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету) [6] .

Решение. Обозначим через А событие – извлечен белый шар. Возможны следующие предположения (гипотезы) о первоначальном составе шаров: B1 – белых шаров нет, В2 – один белый шар, В3 – два белых шара.

Поскольку всего имеется три гипотезы, и сумма вероятностей гипотез равна 1 (так как они образуют полную группу событий), то вероятность каждой из гипотез равна 1/3,т. е.

Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне не было белых шаров, Р(А/B1)=1/3. Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне был один белый шар, Р(А/B2)=2/3. Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне было два белых шара Р(А/B3)=3/3=1.

Искомую вероятность того, что будет извлечен белый шар, находим по формуле полной вероятности:

Задача 2.18. Два автомата производят одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата вдвое больше производительности второго. Первый автомат производит в среднем 60% деталей отличного качества, а второй – 84%. Наудачу взятая с конвейера деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена первым автоматом[6] .

Решение. Обозначим через А событие – деталь отличного качества. Можно сделать два предположения: B1 – деталь произведена первым автоматом, причем (поскольку первый автомат производит вдвое больше деталей, чем второй) Р(А/B1) = 2/3; B2 – деталь произведена вторым автоматом, причем P(B2) = 1/3.

Условная вероятность того, что деталь будет отличного качества, если она произведена первым автоматом, Р(А/B1)=0,6.

Условная вероятность того, что деталь будет отличного качества, если она произведена вторым автоматом, Р(А/B1)=0,84.

Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности равна

Искомая вероятность того, что взятая отличная деталь произведена первым автоматом, по формуле Бейеса равна

Задача 2.19. Имеются три партии деталей по 20 деталей в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равны 20, 15, 10. Из выбранной партии наудачу извлечена деталь, оказавшаяся стандартной. Детали возвращают в партию и вторично из этой же партии наудачу извлекают деталь, которая также оказывается стандартной. Найти вероятность того, что детали были извлечены из третьей партии.

Решение. Обозначим через А событие – в каждом из двух испытаний (с возвращением) была извлечена стандартная деталь. Можно сделать три предположения (гипотезы): B1 – детали извлекаются из первой партии, В2 – детали извлекаются из второй партии, В3 – детали извлекаются из третьей партии.

Детали извлекались наудачу из взятой партии, поэтому вероятности гипотез одинаковы: P(B1) = P(B2) = P(B3) = 1/3.

Что ты хочешь узнать?

Ответ

Проверено экспертом

Вероятность достать стандартную лампочку, равна 0.92, а достать нестандартную лампочку — 0.08

а) Вероятность того, что из 3 наудачу взятых стандартных лампочек окажется менее 2, равна (по интегральной теореме Лапласа)

б) Вероятность того, что из 3 наудачу взятых по крайней мере 1 нестандартная лампочка, равна

где — вероятность того, что среди отобранных лампочек ни одной нестандартной лампочки.

Общая постановка задачи примерно* следующая:

В ящике находится $K$ стандартных и $N-K$ бракованных деталей (всего $N$ деталей). Наудачу и без возвращения вынимают $n$ деталей. Найти вероятность того, что будет выбрано ровно $k$ стандартных и $n-k$ бракованных деталей.

*Поясню, что значит "примерно": вместо деталей могут фигурировать изделия, болты, телевизоры и т.п.; детали могут быть стандартными и бракованными, или годными и дефектными, или обычными и поломанными и так далее. Главное, чтобы они были ДВУХ типов, тогда один тип вы считаете условно "стандартными", второй — "бракованными" и используете формулу для решения, которую мы выведем ниже.

Сначала найдем общее число исходов — это число всех различных способов выбрать любые $n$ деталей из общего множества в $N$ деталей (без учета порядка), то есть число сочетаний $C_N^n$ (см. подробнее про сочетания).

Теперь найдем число всех способов выбрать $k$ стандартных деталей из $K$ возможных — это сочетания $C_K^k$, и одновременно число всех способов выбрать $n-k$ бракованных деталей из $N-K$ возможных — $C_^$. По правилу произведения перемножая эти числа, получим число исходов, благоприятствующих нашему событию — $C_K^k cdot C_^$.

Применяя классическое определение вероятности — поделив число благоприятствующих исходов на общее число исходов, придем к искомой формуле:

Видеоурок и шаблон Excel

Посмотрите наш ролик о решении задач про детали в схеме гипергеометрической вероятности, узнайте, как использовать Excel для решения типовых задач.

Расчетный файл Эксель из видео можно бесплатно скачать и использовать для решения своих задач.

Примеры решений задач о выборе деталей/изделий

Пример 1. В партии из 12 изделий 5 изделий имеют скрытый дефект. Какова вероятность того, что из взятых наугад 4 изделий 2 изделия являются дефектными?

Популярная задача из методички, в которой меняются только цифры, а вариантов множество. С помощью данного решения и калькулятора ниже для числовых расчетов, вы легко получите полное решение задачи. Для разнообразия сделаем подробное пояснение.

Начинаем решение задачи с ввода события $A = $ (Из взятых наугад 4 изделий 2 изделия являются дефектными) и общей формулы для нахождения вероятности. Так как речь идет о выборе объектов из совокупности, используем классическое определение вероятности $P(A)=m/n$, где $n$ — общее число всех равновозможных элементарных исходов, а $m$ — число исходов, благоприятствующих событию $A$.

Сначала найдем общее число исходов — это число способов выбрать любые 4 изделия из партии в 12 изделий. Так как порядок выбора несущественнен, применяем формулу для числа сочетаний из 12 объектов по 4: $n=C_<12>^4$.

Теперь переходим к числу благоприятствующих событию исходов. Для этого нужно, чтобы из 4 выбранных изделий 2 были дефектные (выбираем любые 2 дефектные изделия из 5 $C_5^2$ способами) и еще 2 — стандартные (выбираем любые 2 стандартные изделия из 12-5=7 имеющихся в партии $C_7^2$ способами). Тогда всего способов выбрать 2 дефектных и 2 обычных изделия из партии будет $m = C_5^2 cdot C_7^2$.

Нужная вероятность равна:

Пример 2. В ящике 16 стандартных и 7 бракованных деталей. Наудачу извлечены 6 деталей. Найти вероятность того, что среди извлеченных ровно 4 стандартных детали.

Подставляем в формулу (1) значения: $K=16$ стандартных деталей, $N-K=7$ бракованных деталей, итого $N=16+7=23$ всего деталей в ящике. Из ящика извлекают $n=6$ деталей, из них должно быть $k=4$ стандартных и соответственно, $n-k=6-4=2$ бракованные. Получаем нужную вероятность:

Пример 3. В партии из 12 изделий 8 стандартных. Найти вероятность того, что среди 3 наугад взятых есть хотя бы одно нестандартное.

Эта задача самую малость сложнее предыдущих. В ней помимо исходного события
$A = $ (Среди 3 наугад взятых изделий есть хотя бы одно нестандартное),
введем еще противоположное ему событие, которое можно записать как
$overline = $ (Все три выбранные изделия стандартные).

Тогда вероятность искомого события (что будет хотя бы одно нестандартное изделие из 3), равна:

Пример 4. Мастер для замены получил 8 однотипных деталей, из которых 3 бракованные. Он заменил 2 детали. Найти вероятность того, что замененными оказались годные детали.

Подставляем в формулу (1) значения: $K=8-3=5$ годных деталей, $N-K=3$ бракованных, $N=8$ всего деталей у мастера. Выбираем для замены $n=2$ детали, и обе они должны оказаться годными, то есть: $k=2$, $n-k=0$. Приходим к ответу:


[an error occurred while processing the directive]
Карта сайта