Дана плотность распределения вероятностей

Задание 2. Найти дисперсию случайной величины X , заданной интегральной функцией.

Задание 3. Найти математическое ожидание случайной величины Х заданной функцией распределения.

Задание 4. Плотность вероятности некоторой случайной величины задана следующим образом: f(x) = A/x 4 (x = 1; +∞)
Найти коэффициент A , функцию распределения F(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале [0,2]. Построить графики f(x) и F(x) .

Задача. Функция распределения некоторой непрерывной случайной величины задана следующим образом:

Определить параметры a и b , найти выражение для плотности вероятности f(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале [2,3]. Построить графики f(x) и F(x).

  • Решение
  • Видео решение

Случайная величина Х задана плотностью распределения f(x):

Пример №2 . Случайная величина X задана функцией распределения F(x). Найти плотность распределения вероятностей, математическое ожидание и дисперсию случайной величины. Схематично построить графики функций F(x) и f(x).

Определение непрерывной случайной величины и её связь с вероятностью

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной, если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала. Для непрерывной случайной величины невозможно указать все возможные значения, поэтому обозначают интервалы этих значений, которые связаны с определёнными вероятностями.

Примерами непрерывных случайных величин могут служить: диаметр детали, обтачиваемой до заданного размера, рост человека, дальность полёта снаряда и др.

Так как для непрерывных случайных величин функция F(x), в отличие от дискретных случайных величин, нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Это значит, что для непрерывной случайной величины бессмысленно говорить о распределении вероятностей между её значениями: каждое из них имеет нулевую вероятность. Однако в некотором смысле среди значений непрерывной случайной величины есть "более и менее вероятные". Например, вряд ли у кого-либо возникнет сомнение, что значение случайной величины — роста наугад встреченного человека — 170 см — более вероятно, чем 220 см, хотя и одно, и другое значение могут встретиться на практике.

Функция распределения непрерывной случайной величины и плотность вероятности

В качестве закона распределения, имеющего смысл только для непрерывных случайных величин, вводится понятие плотности распределения или плотности вероятности. Подойдём к нему путём сравнения смысла функции распределения для непрерывной случайной величины и для дискретной случайной величины.

Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х.

Для дискретной случайной величины в точках её значений x 1 , x 2 , . x i . сосредоточены массы вероятностей p 1 , p 2 , . p i . , причём сумма всех масс равна 1. Перенесём эту интерпретацию на случай непрерывной случайной величины. Представим себе, что масса, равная 1, не сосредоточена в отдельных точках, а непрерывно "размазана" по оси абсцисс Оx с какой-то неравномерной плотностью. Вероятность попадания случайной величины на любой участок Δx будет интерпретироваться как масса, приходящаяся на этот участок, а средняя плотность на этом участке — как отношение массы к длине. Только что мы ввели важное понятие теории вероятностей: плотность распределения.

Плотностью вероятности f(x) непрерывной случайной величины называется производная её функции распределения:

.

Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [a; b]:

вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a; b], равна определённому интегралу от её плотности вероятности в пределах от a до b:

.

При этом общая формула функции F(x) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f(x) :

.

График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох, графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b.

Свойства функции плотности вероятности непрерывной случайной величины

1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f(x) и ось Ох) равна единице:

2. Функция плотности вероятности не может принимать отрицательные значения:

,

а за пределами существования распределения её значение равно нулю

Плотность распределения f(x), как и функция распределения F(x), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.

Если функция плотности распределения f(x) непрерывной случайной величины в некотором конечном интервале [a; b] принимает постоянное значение C, а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным.

Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным.

Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:

Найти функцию f(x) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .

Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:

График функции F(x) — парабола:

График функции f(x) — прямая:

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:

.

Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:

Вычислить коэффициент C . Найти функцию F(x) распределения вероятностей непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 0 до 5: .

Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:

Таким образом, функция плотности вероятности непрерывной случайной величины:

Интегрируя, найдём функцию F(x) распределения вероятностей. Если x , то F(x) = 0 . Если 0 , то

.

Таким образом, полная запись функции распределения вероятностей:

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:

.

Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом . Найти коэффициент А, вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X.

Решение. По условию приходим к равенству

.

Следовательно, , откуда . Итак,

.

Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:

Теперь получим функцию распределения данной случайной величины:

Пример 4. Найти плотность вероятности непрерывной случайной величины X, которая принимает только неотрицательные значения, а её функция распределения .

Решение. По определению плотности вероятности получаем

при и при , поскольку F(x) для этих значений x постоянна (равна нулю).

Пример 5. Плотность распределения непрерывной случайной величины задана формулой:

(при x > 0 )

(a — положительный коэффициент).

1) найти функцию распределения непрерывной случайной величины;

2) найти вероятность того, что непрерывная случайная величина примет значение, лежащее между 1 и 2.

1) При x f(x) = 0 , значит . При x > 0 . Первый интеграл равен нулю. Второй . Итак, функция распределения данной непрерывной случайной величины имеет вид:

2) вероятность попадания непрерывной случайной величины на участок между 1 и 2 вычислим как приращение функции распределения на этом участке:

Пример 6. Непрерывная случайная величина имеет плотность

при .

1) найти вероятность попадания непрерывной случайной величины на участок от 0 до π/4;

2) функцию распределения непрерывной случайной величины.

1) находим вероятность:

.

2) находим функцию распределения непрерывной случайной величины:

Пример 7. Плотность распределения непрерывной случайной величины задана формулой

.

Найти вероятность попадания непрерывной случайной величины на участок (-1; +1)

.

Найти: а) константу А; б) функцию распределения , в ответ записать

а) Из условия нормировки следует, что , откуда

б) Воспользуемся формулой

в) Применяем формулу:

г) Применяем формулу:

д) Применим формулу:

? — среднее квадратическое отклонение,

эта функция табулирована, ее значение берем из таблицы.

Из таблицы находим

Найти: а) ряды распределений X и Y; б) ; в) ; г) ; д) ; е) ; ж) , округлить до 0,01; з) ряд распределения Y, если X = 0; и) , округлить до 0,01.

а) Суммируя по столбцам, а затем по столбцам элементы матрицы распределения, получаем искомые ряды распределения.

б) Используем формулу:

г) Используем формулу:

е) Используем формулу:

ж) . Вычитаем по формуле:

з) Используем формулу:

Получаем ряд распределения:

Найти: а) константу

С; б) ; в) ; г) ; д) ; е) ; ж) ; з) ; и) F(2,10); к)

а) Константу С найдем из условия нормировки:


[an error occurred while processing the directive]
Карта сайта